$\dfrac{dy}{dx}$ | $y$ | $\int y\, dx$ |
---|---|---|
$1$ | $x$ | $\frac{1}{2} x^2 + C$ |
$0$ | $a$ | $ax + C $ |
$1$ | $x ± a$ | $\frac{1}{2} x^2 ± ax + C$ |
$a$ | $ax $ | $\frac{1}{2} ax^2 + C $ |
$2x$ | $x^2$ | $\frac{1}{3} x^3 + C $ |
$nx^{n-1}$ | $x^n$ | $ \dfrac{1}{n+1} x^{n+1} + C $ |
$-x^{-2} $ | $x^{-1}$ | $\log_\epsilon x + C$ |
$\dfrac{du}{dx} ± \dfrac{dv}{dx} ± \dfrac{dw}{dx}$ | $u ± v ± w$ | $\int u\, dx ± \int v\, dx ± \int w\, dx$ |
$u\, \dfrac{dv}{dx} + v\, \dfrac{du}{dx}$ | $uv$ | No general form known |
$\dfrac{v\, \dfrac{du}{dx} - u\, \dfrac{dv}{dx}}{v^2}$ | $\dfrac{u}{v}$ | No general form known |
$\dfrac{du}{dx}$ | $u$ | $ux - \int x\, du + C$ |
$\epsilon^x$ | $\epsilon^x$ | $\epsilon^x + C$ |
$x^{-1}$ | $\log_\epsilon x$ | $ x(\log_\epsilon x - 1) + C$ |
$0.4343 × x^{-1}$ | $\log_{10} x$ | $0.4343x (\log_\epsilon x - 1) + C$ |
$a^x \log_\epsilon a$ | $a^x$ | $\dfrac{a^x}{\log_\epsilon a} + C$ |
$\cos x$ | $\sin x$ | $-\cos x + C $ |
$-\sin x$ | $\cos x$ | $\sin x + C $ |
$\sec^2 x$ | $\tan x$ | $-\log_\epsilon \cos x + C $ |
$\dfrac{1}{\sqrt{(1-x^2)}}$ | $\arcsin x$ | $x · \arcsin x + \sqrt{1 - x^2} + C$ |
$-\dfrac{1}{\sqrt{(1-x^2)}}$ | $\arccos x$ | $x · \arccos x - \sqrt{1 - x^2} + C$ |
$\dfrac{1}{1+x^2}$ | $\arctan x$ | $x · \arctan x - \frac{1}{2} \log_\epsilon (1 + x^2) + C$ |
$\cosh x $ | $\sinh x$ | $\cosh x + C$ |
$\sinh x $ | $\cosh x$ | $\sinh x + C$ |
$\text{sech}^2 x $ | $\tanh x$ | $\log_\epsilon \cosh x + C $ |
$-\dfrac{1}{(x + a)^2}$ | $\dfrac{1}{x + a}$ | $ \log_\epsilon (x+a) + C $ |
$-\dfrac{x}{(a^2 + x^2)^{\frac{3}{2}}}$ | $\dfrac{1}{\sqrt{a^2 + x^2}}$ | $\log_\epsilon (x + \sqrt{a^2 + x^2}) + C $ |
$\mp \dfrac{b}{(a ± bx)^2}$ | $\dfrac{1}{a ± bx}$ | $± \dfrac{1}{b} \log_\epsilon (a ± bx) + C $ |
$-\dfrac{3a^2x}{(a^2 + x^2)^{\frac{5}{2}}}$ | $\dfrac{a^2}{(a^2 + x^2)^{\frac{3}{2}}}$ | $\dfrac{x}{\sqrt{a^2 + x^2}} + C $ |
$ a · \cos ax$ | $\sin ax$ | $-\dfrac{1}{a} \cos ax + C $ |
$-a · \sin ax$ | $\cos ax$ | $ \dfrac{1}{a} \sin ax + C $ |
$ a · \sec^2ax$ | $\tan ax$ | $-\dfrac{1}{a} \log_\epsilon \cos ax + C $ |
$ \sin 2x$ | $\sin^2 x$ | $\dfrac{x}{2} - \dfrac{\sin 2x}{4} + C $ |
$-\sin 2x$ | $\cos^2 x$ | $\dfrac{x}{2} + \dfrac{\sin 2x}{4} + C $ |
$n · \sin^{n-1} x · \cos x$ | $ \sin^n x$ | $-\frac{\cos x}{n} \sin^{n-1} x + \frac{n-1}{n} \int \sin^{n-2} x\, dx + C$ |
$-\dfrac{\cos x}{\sin^2 x}$ | $\dfrac{1}{\sin x}$ | $\log_\epsilon \tan \dfrac{x}{2} + C$ |
$-\dfrac{\sin 2x}{\sin^4 x}$ | $\dfrac{1}{\sin^2 x}$ | $ -\text{cotan} x + C$ |
$\dfrac{\sin^2 x - \cos^2 x}{\sin^2 x · \cos^2 x}$ | $ \dfrac{1}{\sin x · \cos x}$ | $ \log_\epsilon \tan x + C $ |
$n · \sin mx · \cos nx + m · \sin nx · \cos mx $ | $\sin mx · \sin nx$ | $\frac{1}{2} \cos(m - n)x - \frac{1}{2} \cos(m + n)x + C$ |
$ 2a·\sin 2ax$ | $\sin^2 ax$ | $\dfrac{x}{2} - \dfrac{\sin 2ax}{4a} + C $ |
$-2a·\sin 2ax$ | $\cos^2 ax$ | $\dfrac{x}{2} + \dfrac{\sin 2ax}{4a} + C $ |